4.2 Article

FINITE ELEMENT ANALYSIS OF THE HUMAN HEAD UNDER SIDE CAR CRASH IMPACTS AT DIFFERENT SPEEDS

期刊

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0219519414400028

关键词

Human head model; traumatic brain injury; dummy model; biomechanical; head; brain

资金

  1. Center for Advanced Vehicular Systems (CAVS) at Mississippi State University
  2. Spring Sunshine Plan [10202258]
  3. Xihua University [XZD0813-09-1]

向作者/读者索取更多资源

Mechanical response of the human head under a side car crash impact is crucial for modeling traumatic brain injuries (TBI) or concussions. The current advances in computational methods and the finite element models of the human head provide a significant opportunity for biomechanical study of brain injuries; however, limited experimental data is available for delineating the injury relationship between the head injury criteria (HIC) and the tensile pressure or von Mises stress. In this research, we assess human head injuries in a side impact car crash using finite element (FE) simulations that quantify the tensile pressures and maximum strain profiles. In doing so, five FE analyses for the human head have been carried out to investigate the correlations between the HIC measured in the dummy model at different moving deformable barrier (MDB) velocities increasing from 10 mph to 30 mph in 5 mph increments and the pressure and von Mises stress of the skull, the skin, the cerebral spinal fluid (CSF) and the brain. The computational simulation results for the tensile pressures and von Mises stresses correlated well with the HIC15 and peak accelerations. Also a second-order polynomial seemed to fit the stress levels to the impact speeds and as such the presented method for using FE human head analysis could be used for reconstruction of head impacts in different side car crash conditions; furthermore, the head model would provide a tool for investigation of the cause and mechanisms of head injuries once the type and locations of injuries are quantified.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据