4.2 Article

CLASSIFICATION OF EEG SIGNALS IN NORMAL AND DEPRESSION CONDITIONS BY ANN USING RWE AND SIGNAL ENTROPY

期刊

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0219519412400192

关键词

EEG; relative wavelet energy (RWE); artificial feedforward neural network; discrete wavelet transform (DWT); multiresolution decomposition; Parseval's theorem; wavelet entropy (WE)

向作者/读者索取更多资源

EEG is useful for the analysis of the functional activity of the brain and a detailed assessment of this non-stationary waveform can provide crucial parameters indicative of the mental state of patients. The complex nature of EEG signals calls for automated analysis using various signal processing methods. This paper attempts to classify the EEG signals of normal and depression patients using well-established signal processing techniques involving relative wavelet energy (RWE) and artificial feedForward neural network. High frequency noise present in the recorded signal is removed using total variation filtering (TVF). Classification of the frequency bands of EEG signals into appropriate detail levels and approximation level is carried out using an eight-level multiresolution decomposition method of discrete wavelet transform (DWT). Parseval's theorem is used for calculating the energy at different resolution levels. RWE analysis gives information about the signal energy distribution at different decomposition levels. Both RWE and feedforward Network are used to classify the signals from normal controls and depression patients. The performance of the artificial neural network was evaluated using the classification accuracy and its value of 98.11% indicates a great potential for classifying normal and depression signals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据