4.2 Article

AN IMPROVED MODEL FOR REDUCED-ORDER PHYSIOLOGICAL FLUID FLOWS

期刊

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0219519411004666

关键词

Pulsed flow equations; physiological fluid dynamics; 1D reduced-order modeling; cardiovascular mechanics; arterial tree simulation

资金

  1. Defense Threat Reduction Agency [B082617M]
  2. National Academies National Research Council

向作者/读者索取更多资源

An improved one-dimensional mathematical model based on the Pulsed Flow Equations (PFE) is derived by integrating the axial component of the momentum equation over the transient Womersley velocity profile, providing a dynamic momentum equation whose coefficients are smoothly varying functions of the spatial variable. The resulting momentum equation along with the continuity equation and pressure-area relation form our reduced-order model for physiological fluid flows in one dimension and are aimed at providing accurate and fast-to-compute global models for physiological systems represented as networks of quasi one-dimensional fluid flows. The consequent nonlinear coupled system of equations is solved by the Lax-Wendroff scheme and is then applied to an open model arterial network of the human vascular system containing the largest 55 arteries. The proposed model with functional coefficients is compared with current classical one-dimensional theories which assume steady state Hagen-Poiseuille velocity profiles, either parabolic or plug-like, throughout the whole arterial tree. The effects of the nonlinear term in the momentum equation and different strategies for bifurcation points in the network, as well as the various lumped parameter outflow boundary conditions for distal terminal points are also analyzed. The results show that the proposed model can be used as an efficient tool for investigating the dynamics of reduced-order models of flows in physiological systems and would, in particular, be a good candidate for the one-dimensional, system-level component of geometric multiscale models of physiological systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据