4.3 Article

Finite element analysis of a subsurface penny-shaped crack with crack-face contact and friction under a moving compressive load

期刊

JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
卷 26, 期 9, 页码 2719-2726

出版社

KOREAN SOC MECHANICAL ENGINEERS
DOI: 10.1007/s12206-012-0741-8

关键词

Finite element analysis; Moving load; Penny-shaped crack; Stress intensity factor

资金

  1. University of Ulsan

向作者/读者索取更多资源

A three-dimensional subsurface penny-shaped crack in an elastic half-space subjected to a compressive moving load is analyzed using the finite element method. The compressive load is applied through a spherical asperity, which moves from left to right on the top surface of the half-space. Normal contact between the crack faces of the penny-shaped crack is modeled using the classical Lagrange multiplier method for constraint enforcement; the tangential contact between the crack faces is assumed to exhibit frictional behavior. Therefore, although the present analysis is limited to a purely linear elastic quasistatic approach, the analysis results show the loading path dependence caused by the frictional contact. Based on linear elastic fracture mechanics, stress intensity factors along the crack front of the penny-shaped crack are evaluated as functions of the crack-front angle, frictional coefficient, normalized load position, and the ratio of the crack depth to the crack length. Finite element analysis shows that shearing-mode failure rather than tearing-mode failure is the dominant cracking mechanism of the penny-shaped crack. This shearing-mode failure tends to occur in the direction of the loading path.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据