4.5 Article

An Inverse, Decision-Based Design Method for Integrated Design Exploration of Materials, Products, and Manufacturing Processes

期刊

JOURNAL OF MECHANICAL DESIGN
卷 140, 期 11, 页码 -

出版社

ASME
DOI: 10.1115/1.4041050

关键词

-

资金

  1. Tata Consultancy Services Research, Pune [105-373200]
  2. John and Mary Moore Chair
  3. L.A. Comp Chair at the University of Oklahoma

向作者/读者索取更多资源

A material's design revolution is underway with a focus to design the material microstructure and processing paths to achieve certain performance requirements of products. A host of manufacturing processes are involved in producing a product. The processing carried out in each process influences its final properties. To couple the material processing-structure-property performance (PSPP) spaces, models of specific manufacturing processes must be enhanced and integrated using multiscale modeling techniques (vertical integration) and then the input and output of the various manufacturing processes must be integrated to facilitate the flow of information from one process to another (horizontal integration). Together vertical and horizontal integration allows for the decision-based design exploration of the manufacturing process chain in an inverse manner to realize the end product. In this paper, we present an inverse method to achieve the integrated design exploration of materials, products, and manufacturing processes through the vertical and horizontal integration of models. The method is supported by the concept exploration framework (CEF) to systematically explore design alternatives and generate satisficing design solutions. The efficacy of the method is illustrated for a hot rod rolling (HRR) and cooling process chain problem by exploring the processing paths and microstructure in an inverse manner to produce a rod with specific mechanical properties. The proposed method and the exploration framework are generic and support the integrated decision-based design exploration of a process chain to realize an end product by tailoring material microstructures and processing paths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据