4.5 Article

Diagonal quadratic approximation for parallelization of analytical target cascading

期刊

JOURNAL OF MECHANICAL DESIGN
卷 130, 期 5, 页码 -

出版社

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.2838334

关键词

-

向作者/读者索取更多资源

Analytical target cascading (ATC) is an effective decomposition approach used for engineering design optimization problems that have hierarchical structures. With ATC, the overall system is split into subsystems, which are solved separately and coordinated via target/response consistency constraints. As parallel computing becomes more common, it is desirable to have separable subproblems in ATC so that each subproblem can be solved concurrently to increase computational throughput. In this paper we first examine existing ATC methods, providing an alternative to existing nested coordination schemes by using the block coordinate descent method (BCD). Then we apply diagonal quadratic approximation (DQA) by linearizing the cross term of the augmented Lagrangian function to create separable subproblems. Local and global convergence proofs are described for this method. To further reduce overall computational cost, we introduce the truncated DQA (TDQA) method, which limits the number of inner loop iterations of DQA. These two new methods are empirically compared to existing methods using test problems from the literature. Results show that computational cost of nested loop methods is reduced by using BCD, and generally the computational cost of the truncated methods is superior to the nested loop methods with lower overall computational cost than the best previously reported results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据