4.4 Article

Constraint analysis for variational discrete systems

期刊

JOURNAL OF MATHEMATICAL PHYSICS
卷 54, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4818895

关键词

-

资金

  1. Government of Canada through Industry Canada
  2. Province of Ontario through Ministry of Research and Innovation

向作者/读者索取更多资源

A canonical formalism and constraint analysis for discrete systems subject to a variational action principle are devised. The formalism is equivalent to the covariant formulation, encompasses global and local discrete time evolution moves and naturally incorporates both constant and evolving phase spaces, the latter of which is necessary for a time varying discretization. The different roles of constraints in the discrete and the conditions under which they are first or second class and/or symmetry generators are clarified. The (non-) preservation of constraints and the symplectic structure is discussed; on evolving phase spaces the number of constraints at a fixed time step depends on the initial and final time step of evolution. Moreover, the definition of observables and a reduced phase space is provided; again, on evolving phase spaces the notion of an observable as a propagating degree of freedom requires specification of an initial and final step and crucially depends on this choice, in contrast to the continuum. However, upon restriction to translation invariant systems, one regains the usual time step independence of canonical concepts. This analysis applies, e. g., to discrete mechanics, lattice field theory, quantum gravity models, and numerical analysis. (C) 2013 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据