4.4 Article

Asymptotic evolution of quantum walks with random coin

期刊

JOURNAL OF MATHEMATICAL PHYSICS
卷 52, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3575568

关键词

-

资金

  1. DFG [635]
  2. EU

向作者/读者索取更多资源

We study the asymptotic position distribution of general quantum walks on a lattice, including walks with a random coin, which is chosen from step to step by a general Markov chain. In the unitary (i.e., nonrandom) case, we allow any unitary operator which commutes with translations and couples only sites at a finite distance from each other. For example, a single step of the walk could be composed of any finite succession of different shift and coin operations in the usual sense, with any lattice dimension and coin dimension. We find ballistic scaling and establish a direct method for computing the asymptotic distribution of position divided by time, namely as the distribution of the discrete time analog of the group velocity. In the random case, we let a Markov chain (control process) pick in each step one of finitely many unitary walks, in the sense described above. In ballistic order, we find a nonrandom drift which depends only on the mean of the control process and not on the initial state. In diffusive scaling, the limiting distribution is asymptotically Gaussian, with a covariance matrix (diffusion matrix) depending on momentum. The diffusion matrix depends not only on the mean but also on the transition rates of the control process. In the nonrandom limit, i.e., when the coins chosen are all very close or the transition rates of the control process are small, leading to long intervals of ballistic evolution, the diffusion matrix diverges. Our method is based on spatial Fourier transforms, and the first and second order perturbation theory of the eigenvalue 1 of the transition operator for each value of the momentum. (C) 2011 American Institute of Physics. [doi:10.1063/1.3575568]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据