4.5 Article

Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space

期刊

出版社

SPRINGER
DOI: 10.1007/s10851-010-0242-2

关键词

Scale-space; Multi-scale representation; Scale-space axioms; Non-enhancement of local extrema; Causality; Scale invariance; Gaussian kernel; Gaussian derivative; Spatio-temporal; Affine; Spatial; Temporal; Time-recursive; Receptive field; Diffusion; Computer vision; Image processing

资金

  1. Swedish Research Council, Vetenskapsradet [2004-4680]
  2. Royal Swedish Academy of Sciences
  3. Knut and Alice Wallenberg Foundation

向作者/读者索取更多资源

This paper describes a generalized axiomatic scale-space theory that makes it possible to derive the notions of linear scale-space, affine Gaussian scale-space and linear spatio-temporal scale-space using a similar set of assumptions (scale-space axioms). The notion of non-enhancement of local extrema is generalized from previous application over discrete and rotationally symmetric kernels to continuous and more general non-isotropic kernels over both spatial and spatio-temporal image domains. It is shown how a complete classification can be given of the linear (Gaussian) scale-space concepts that satisfy these conditions on isotropic spatial, non-isotropic spatial and spatio-temporal domains, which results in a general taxonomy of Gaussian scale-spaces for continuous image data. The resulting theory allows filter shapes to be tuned from specific context information and provides a theoretical foundation for the recently exploited mechanisms of shape adaptation and velocity adaptation, with highly useful applications in computer vision. It is also shown how time-causal spatio-temporal scale-spaces can be derived from similar assumptions. The mathematical structure of these scale-spaces is analyzed in detail concerning transformation properties over space and time, the temporal cascade structure they satisfy over time as well as properties of the resulting multi-scale spatio-temporal derivative operators. It is also shown how temporal derivatives with respect to transformed time can be defined, leading to the formulation of a novel analogue of scale normalized derivatives for time-causal scale-spaces. The kernels generated from these two types of theories have interesting relations to biological vision. We show how filter kernels generated from the Gaussian spatio-temporal scale-space as well as the time-causal spatio-temporal scale-space relate to spatio-temporal receptive field profiles registered from mammalian vision. Specifically, we show that there are close analogies to space-time separable cells in the LGN as well as to both space-time separable and non-separable cells in the striate cortex. We do also present a set of plausible models for complex cells using extended quasi-quadrature measures expressed in terms of scale normalized spatio-temporal derivatives. The theories presented as well as their relations to biological vision show that it is possible to describe a general set of Gaussian and/or time-causal scale-spaces using a unified framework, which generalizes and complements previously presented scale-space formulations in this area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据