4.4 Article

Modeling the spread of Phytophthora

期刊

JOURNAL OF MATHEMATICAL BIOLOGY
卷 65, 期 6-7, 页码 1359-1385

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00285-011-0492-7

关键词

-

向作者/读者索取更多资源

We consider a model for the morphology and growth of the fungus-like plant pathogen Phytophthora using the example of Phytophthora plurivora. Here, we are utilizing a correlated random walk describing the density of tips. This random walk incorporates a delay in branching behavior: newly split tips only start to grow after a short while. First, we question the effect of such a delay on the running fronts, for uniform- as well as non-uniform turning kernels. We find that this delay primarily influences the slope of the front and therewith the way of spatial appropriation, and not its velocity. Our theoretical predictions are confirmed by the growth of Phytophthora in concrete experiments performed in Petri dishes. The second question addressed in this paper, concerns the manner tips are interacting, especially the point why tips stop to grow behind the interface of the front, respectively in confrontation experiments at the interface between two colonies. The combination of experimental data about the spatially structured time course of the glucose concentration and simulations of a model taking into account both, tips and glucose, reveals that nutrient depletion is most likely the central mechanism of tip interaction and hyphal growth inhibition. We presume that this is the growing mechanism for our kind of Phytophthora in infected plant tissue. Thus, the pathogen will sap its hosts via energy depletion and tissue destruction in infected areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据