4.5 Article

W01,p versus C1 local minimizers for a singular and critical functional

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jmaa.2009.10.012

关键词

Quasilinear singular problems; Variational methods; Local minimizers; Strong comparison principle

向作者/读者索取更多资源

Let Omega subset of R-N be a bounded smooth domain, 1 < p < +infinity, 0 < delta < 1, f : (Omega) over bar R -> R be a C-1 function with f(x, s) >= 0. for all(x, s) is an element of Omega x R+ and sup(x is an element of Omega) f(x, s) <= C(1 + s)(q), for all(S) is an element of R+. for some 0 <= q satisfying q <= p* - 1 if p < N. Lot g : R+ -> R+ continuous on (0, + infinity) nonincreasing and satisfying c(1) = lim inf(t -> 0+) g(t)t(delta) <= lim sup(t -> 0+) g(t)t(delta) = c(2). for some c(1), c(2) > 0. Consider the singular functional I : W-0(1,p)(Omega) -> R defined as I(u) =(def) 1/p parallel to u parallel to(p)(w01,p)((Omega)) -integral F-Omega(x, u(+)) - integral(Omega) G(u(+)) where F(x, u) = integral(s)(0) f(x, s) ds, G(u) = integral(s)(0) g(s) ds. Theorem 1.1 proves that if u(0) is an element of C-1((Omega) over bar) satisfying u(0) >= eta dist(x, delta Omega), for some 0 < eta, is a local minimum of I in the C-1(<(Omega)over bar>) boolean AND C-0((Omega) over bar) topology, then it is also a local minimum in W-0(1,p)(Omega) topology. This result is useful for proving multiple solutions to the associated Euler-Lagrange equation (P) defined below. Theorem 1.1 generalises some results in Giacomoni, Schindler and Takac (2007) [17] and due to the new proof given in the present paper can be also extended to more general quasilinear elliptic equations. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据