4.5 Article

Functionalization of electrospun fibers of poly(ε-caprolactone) with star shaped NCO-poly(ethylene glycol)-stat-poly(propylene glycol) for neuronal cell guidance

期刊

出版社

SPRINGER
DOI: 10.1007/s10856-010-4112-7

关键词

-

资金

  1. Interdisciplinary Centre for Clinical Research [TV B111]
  2. DFG-Graduiertenkolleg [1035]
  3. EU

向作者/读者索取更多资源

Microfibers produced with electrospinning have recently been used in tissue engineering. In the development of artificial implants for nerve regeneration they are of particular interest as guidance structures for cell migration and axonal growth. Using electrospinning we produced parallel-orientated biocompatible fibers in the submicron range consisting of poly(epsilon-caprolactone) (PCL) and star shaped NCO-poly(ethylene glycol)-stat-poly(propylene glycol) (sPEG). Addition of the bioactive peptide sequence glycine-arginine-glycine-aspartate-serine (GRGDS) or the extracellular matrix protein fibronectin to the electrospinning solution resulted in functionalized fibers. Surface characteristics and biological properties of functionalized and non-functionalised fibers were investigated. Polymer solutions and electrospinning process parameters were varied to obtain high quality orientated fibers. A polymer mixture containing high molecular weight PCL, PCL-diol, and sPEG permitted a chemical reaction between hydroxyl groups of the diol and isocyanante groups of the sPEG. Surface analysis demonstrated that sPEG at the fiber surface minimized protein adhesion. In vitro experiments using dorsal root ganglia explants showed that the cell repellent property of pure PCL/sPEG fibers was overcome by functionalization either with GRGDS peptide or fibronectin. In this way cell migration and axonal outgrowth along fibers were significantly increased. Thus, functionalized electrospun PCL/sPEG fibers, while preventing non-specific protein adsorption, are a suitable substrate for biological and medical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据