4.5 Article

A novel bioactive three-dimensional β-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering

期刊

出版社

SPRINGER
DOI: 10.1007/s10856-009-3931-x

关键词

-

资金

  1. Natural Science Foundation of China [30772445]

向作者/读者索取更多资源

The development of suitable bioactive three-dimensional scaffold for the promotion of cellular proliferation and differentiation is critical in periodontal tissue engineering. In this study,porous beta-tricalcium phosphate/chitosan composite scaffolds were prepared through a freeze-drying method. These scaffolds were evaluated by analysis of microscopic structure, porosity, and cytocompatibility. The gene expression of bone sialoprotein (BSP) and cementum attachment protein (CAP) was detected with RT-PCR after human periodontal ligament cells (HPLCs) were seeded in these scaffolds. Then cell-scaffold complexes were implanted subcutaneously into athymic mice. The protein expression of alkaline phosphatase (ALP) and osteopontin (OPN) was detected in vivo. Results indicated that composite scaffolds displayed a homogeneous three-dimensional microstructure; suitable pore size (120 mu m) and high porosity (91.07%). The composite scaffold showed higher proliferation rate than the pure chitosan scaffold, and up-regulated the gene expression of BSP and CAP. In vivo, HPLCs in the composite scaffold not only proliferated but also recruited vascular tissue ingrowth. The protein expression of ALP and OPN was up-regulated in the composite scaffold. Therefore, it was suggested that the composite scaffold could promote the differentiation of HPLCs towards osteoblast and cementoblast phenotypes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据