4.5 Article Proceedings Paper

Hydroxyapatite bone substitutes developed via replication of natural marine sponges

期刊

出版社

SPRINGER
DOI: 10.1007/s10856-009-3961-4

关键词

-

向作者/读者索取更多资源

The application of synthetic cancellous bone has been shown to be highly successful when its architecture mimics that of the naturally interconnected trabeculae bone it aims to replace. The following investigation demonstrates the potential use of marine sponges as precursors in the production of ceramic based tissue engineered bone scaffolds. Three species of natural sponge, Dalmata Fina (Spongia officinalis Linnaeus, Adriatic Sea), Fina Silk (Spongia zimocca, Mediterranean) and Elephant Ear (Spongia agaricina, Caribbean) were selected for replication. A high solid content (80 %wt), low viscosity (126 mPas) hydroxyapatite slurry was developed, infiltrated into each sponge species and subsequently sintered, producing a scaffold structure that replicated pore architecture and interconnectivity of the precursor sponge. The most promising of the ceramic tissue engineered bone scaffolds developed, Spongia agaricina replicas, demonstrated an overall porosity of 56-61% with 83% of the pores ranging between 100 and 500 mu m (average pore size 349 mu m) and an interconnectivity of 99.92%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据