4.6 Article

Effect of Al concentrations on the electrodeposition and properties of transparent Al-doped ZnO thin films

期刊

出版社

SPRINGER
DOI: 10.1007/s10854-014-1796-3

关键词

-

资金

  1. DG-RSDT/MESRS, Algeria through the PNR program

向作者/读者索取更多资源

Al-doped zinc oxide (AZO) thin films are prepared on polycrystalline fluorine-doped tin oxide-coated conducting glass substrates from nitrates baths by the electrodeposition process at 70 A degrees C. The electrochemical, morphological, structural and optical properties of the AZO thin films were investigated in terms of different Al concentration in the starting solution. It was found that the carrier density of AZO thin films varied between -3.11 and -5.56 x 10(20) cm(-3) when the Al concentration was between 0 and 5 at.%. Atomic force microscopy images reveal that the concentration of Al has a very significant influence on the surface morphology and roughness of thin AZO. X-ray diffraction spectra demonstrate preferential (002) crystallographic orientation having c-axis perpendicular to the surface of the substrate and average crystallites size of the films was about 33-54 nm. With increasing Al doping, AZO films have a strong improved crystalline quality. As compared to pure ZnO, Al-doped ZnO exhibited lower crystallinity and there is a shift in the (002) diffraction peak to higher angles. Due to the doping of Al of any concentration, the films were found to be showing > 80 % transparency. As Al concentration increased the optical band gap was also found to be increase from 3.22 to 3.47 eV. The room-temperature photoluminescence spectra indicated that the introduction of Al can improve the intensity of ultraviolet (UV) emission, thus suggesting its greater prospects in UV optoelectronic devices. A detailed comparison and apprehension of electrochemical, optical and structural properties of ZnO and ZnO:Al thin films is done for the determination of optimum concentration of Al doping.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据