4.6 Article

Tensile, dielectric, and thermal properties of epoxy composites filled with silica, mica, and calcium carbonate

期刊

出版社

SPRINGER
DOI: 10.1007/s10854-014-1847-9

关键词

-

资金

  1. Collaborative Research in Engineering, Science and Technology (CREST)

向作者/读者索取更多资源

The minerals silica, mica, and calcium carbonate (CaCO3) were used as fillers to produce epoxy thin film composites for capacitor application. The effects of filler loading and type on the morphology, tensile, dielectric, and thermal properties of the epoxy thin film composites were determined. Results showed that epoxy thin films with 20 vol% filler loading showed good dielectric properties, thermal conductivity, and thermal stability. However, the tensile properties of the thin films were reduced as the filler loading was increased due to brittleness. Dielectric constant and dielectric loss of epoxy/inorganic composite films generally increased with increasing mineral filler loading. Meanwhile, the presence of mineral filler improved the thermal stability of the thin film composites. The highest dielectric constant of 5.75 with 20 vol% filler loading at a frequency of 1 MHz was exhibited by the epoxy/CaCO3 composite, followed by epoxy/mica and epoxy/silica. Therefore, the epoxy/CaCO3 composite is the most potential candidate for capacitor application. Moreover, precipitated CaCO3 provided better tensile properties and slightly improved the dielectric properties compared with mineral CaCO3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据