4.6 Article

Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties

期刊

JOURNAL OF MATERIALS SCIENCE
卷 49, 期 1, 页码 243-254

出版社

SPRINGER
DOI: 10.1007/s10853-013-7698-6

关键词

-

向作者/读者索取更多资源

Intumescent flame retardant polyurethane (IF-RPU) composites were prepared in the presence of reduced graphene oxide (rGO) as synergism, melamine, and microencapsulated ammonium polyphosphate. The composites were examined in terms of thermal stability (both under nitrogen and air), electrical conductivity, gas barrier, flammability, mechanical, and rheological properties. Wide-angle X-ray scattering and scanning electron microscopy indicated that rGO are well-dispersed and exfoliated in the IFRPU composites. The limiting oxygen index values increased from 22.0 to 34.0 with the addition of 18 wt% IFR along with 2 wt% rGO. Moreover, the incorporation of rGO into IFRPU composites exhibited excellent antidripping properties as well as UL-94 V0 rating. The thermal stability of the composites enhanced. This was attributed to high surface area and good dispersion of rGO sheets induced by strong interactions between PU and rGO. The oxygen permeability, electrical, and viscoelasticity measurements, respectively, demonstrated that rGO lead to much more reduction in the gas permeability (by similar to 90 %), high electrical conductivity, and higher storage modulus of IFRPU composites. The tensile strength, modulus, and shore A remarkably improved by the incorporation of 2.0 wt% of rGO as well.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据