4.6 Article

A hybrid gas-sensing material based on porous carbon fibers and a TiO2 photocatalyst

期刊

JOURNAL OF MATERIALS SCIENCE
卷 48, 期 23, 页码 8320-8328

出版社

SPRINGER
DOI: 10.1007/s10853-013-7645-6

关键词

-

向作者/读者索取更多资源

The electrode material for a gas sensor was prepared from electrospun carbon fibers. The electrode material was chemically activated to enlarge the gas adsorption sites, and carbon nanotubes (CNTs) were embedded into the polyacrylonitrile-based carbon fibers to enhance their electrical conductivity. TiO2 was used as an additive to promote NO gas degradation and to improve their response in NO gas sensing. The chemical activation process increased the specific surface area and pore volume of the carbon fibers to values in excess of 2000 m(2)/g and 1.0 ml/g, respectively. To investigate the photocatalytic effects of the TiO2 additive, NO gas sensing was conducted in the presence and absence of ultraviolet irradiation. The subsequent results indicate that the response of the sensor was improved due to the TiO2-photocatalyzed decomposition of NO gas and the subsequent adsorption of HNO2, NO2, and HNO3. The electrical resistance of the sensor was significantly reduced during NO gas sensing due to the electron hopping effect, and highly efficient gas adsorption was observed. In conclusion, a sensitive gas sensor electrode was realized by fabricating a porous material to increase the efficiency of gas adsorption, adding CNTs to improve its electrical conductivity and adding TiO2 photocatalysts to promote NO decomposition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据