4.6 Article

Recent progress in ab initio simulations of hafnia-based gate stacks

期刊

JOURNAL OF MATERIALS SCIENCE
卷 47, 期 21, 页码 7399-7416

出版社

SPRINGER
DOI: 10.1007/s10853-012-6568-y

关键词

-

资金

  1. National Science Foundation
  2. Office of Naval Research
  3. Alexander von Humboldt Foundation
  4. Max Planck Society

向作者/读者索取更多资源

The continuous size downscaling of complementary metal-oxide-semiconductor (CMOS) transistors has led to the replacement of SiO2 with a HfO2-based high dielectric constant (or high-k) oxide, and the polysilicon electrode with a metal gate. The approach to this technological evolution has spurred a plethora of fundamental research to address several pressing issues. This review focusses on the large body of first principles (or ab initio) computational work employing conventional density functional theory (DFT) and beyond-DFT calculations pertaining to HfO2-based dielectric stacks. Specifically, structural, thermodynamic, electronic, and point-defect properties of bulk HfO2, Si/HfO2 interfaces, and metal/HfO2 interfaces are covered in detail. Interfaces between HfO2 and substrates with high mobility such as Ge and GaAs are also briefly reviewed. In sum, first principles studies have provided important insights and guidances to the CMOS research community and are expected to play an even more important role in the future with the further optimization and scaling down of transistors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据