4.6 Article

Indentation strength method to determine the fracture toughness of La0.58Sr0.4Co0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ

期刊

JOURNAL OF MATERIALS SCIENCE
卷 47, 期 6, 页码 2695-2699

出版社

SPRINGER
DOI: 10.1007/s10853-011-6095-2

关键词

-

资金

  1. Federal Ministry of Economics and Technology via the MEM-OXYCOAL [0327803]

向作者/读者索取更多资源

The temperature-dependent fracture toughness of brittle ceramics can be conveniently assessed from bending tests of specimens with defined cracks introduced by indentation. However, the validity of this indentation strength in bending method (ISM) depends critically on the correct consideration of the residual stress induced by the indentation process. The ISM has been applied to La0.58Sr0.4Co0.2Fe0.8O3-delta (LSCF) and, for comparison, on Ba0.5Sr0.5Co0.2Fe0.8O3-delta (BSCF) perovskite. LSCF with rhombohedral phase exhibits ferro-elastic behavior at ambient temperature, whereas BSCF deforms linear-elastically. Pre-indented specimens of both perovskites were fractured at room temperature in biaxial bending, some of them after an additional annealing step. The fracture toughness values of BSCF match reasonably well when determined with equations which consider the presence or absence of residual indentation stress. Interestingly, annealing has little influence on the apparent toughness results obtained for rhombohedral LSCF, which appears to be related with stress relaxation by ferro-elastic deformation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据