4.6 Article

Temperature and stress fields evolution during spark plasma sintering processes

期刊

JOURNAL OF MATERIALS SCIENCE
卷 45, 期 23, 页码 6528-6539

出版社

SPRINGER
DOI: 10.1007/s10853-010-4742-7

关键词

-

向作者/读者索取更多资源

Numerical modelling of Spark Plasma Sintering (SPS) processes is essential to evaluate temperature and stress distributions that can result in sample inhomogeneities. Most of the available literature, however, produced analysis in static conditions. In this work, we focused our attention on the time evolution of current density, temperature and stress distribution during a SPS process using a new approach that includes a PID control in the algorithm, allowing a realistic simulation of experiments performed using a temperature controller. Controlled temperature experiments have been simulated and discussed, with special interest focused on the time evolution of the process. The results showed that stress gradients inside the samples (similar to 40%) are much greater than the temperature gradients (similar to 2%), suggesting that heterogeneities in the microstructure can also be caused by the stress gradient. During the evolution of the process, a peak in stresses is experienced by the alumina sample at the beginning of the cooling stage, caused by differences in contraction between the sample and the die. It has been proved that, using a controlled cooling stage, these peaks in the stresses can be easily eliminated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据