4.6 Article

Effect of the long chain extender on the properties of linear and castor oil cross-linked PEG-based polyurethane elastomers

期刊

JOURNAL OF MATERIALS SCIENCE
卷 46, 期 7, 页码 2251-2258

出版社

SPRINGER
DOI: 10.1007/s10853-010-5064-5

关键词

-

向作者/读者索取更多资源

Polyurethane (PU) elastomers were elaborated from polyethylene glycol of high molecular weight (MW = 4,000), 1,6-hexamethylene diisocyanate and polyethylene glycol (PEG(1500)) (MW = 1,500) as a long linear chain extender and/or castor oil as a cross-linker and were obtained in the form of transparent films. These poly(ether urethanes) elastomers are obtained by replacing the short-chain diol monomers with high molecular weight polyethylene glycols (PEG(1500)). High molecular weight polyethylene glycol (MW = 4,000 and 1,500, respectively) have greater chain length thus producing networks with lower cross-linking densities and higher average molecular weight between two consecutive cross-links. The PU properties were investigated using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, mechanical analysis and thermogravimetry. The results showed that the prepared polyurethanes (PUs) had very good tensile properties. The stress-strain data show that the PU elastomers obtained using a 60/40% OHPEG1500/OHcastor oil ratio have the best mechanical properties. The thermal degradation of the castor oil cross-linked PU elastomers starts at 280-300 A degrees C, compared to the thermal degradation of linear PUs which begins at 220 A degrees C. During storage at 25 A degrees C, the morphology and mechanical properties of the elastomer films have been observed to change in time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据