4.6 Article

Novel nanostructured PCC fillers

期刊

JOURNAL OF MATERIALS SCIENCE
卷 44, 期 2, 页码 477-482

出版社

SPRINGER
DOI: 10.1007/s10853-008-3095-y

关键词

-

资金

  1. Finnish Funding Agency for Technology and Innovation (Tekes)

向作者/读者索取更多资源

New filler and pigment technologies are needed to improve the optical properties of paper. Filler contents in different paper grades are approaching the maximum levels achievable with current papermaking practices. Much work has been done to maximize the light scattering potential of fillers and pigments by modifying their particle size distribution or specific surface area. The refractive index (RI) is an optical constant of pigment, and less attention has been paid to the possibility of increasing this parameter. In the present study, a novel nanostructured filler-grade precipitated calcium carbonate (PCC) pigment was synthesized. Zinc-based nanostructures, physically contacted with the host PCC material, increase the differences in RI between filler-fiber and filler-air interfaces, yielding increased light scattering. The effective RI of the novel filler was measured using a method which combines a multi-function spectrometer with the immersion liquid method. This method enables effective RI measurement from pigment suspensions, irrespective of the shape, size, and nanostructures occurring on the host pigments. When compared to conventional PCC, the results gained with the nanostructured PCCs suggest an increase in the effective RI. When used as filler in paper, nanostructured PCC yields improved light scattering, i.e., better opacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据