4.5 Article

Two-dimensional layered materials: Structure, properties, and prospects for device applications

期刊

JOURNAL OF MATERIALS RESEARCH
卷 29, 期 3, 页码 348-361

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1557/jmr.2014.6

关键词

-

资金

  1. NSF independent research and development (IRD) program

向作者/读者索取更多资源

Graphene's layered structure has opened new prospects for the exploration of properties of other monolayer-thick two-dimensional (2D) layered crystals. The emergence of these inorganic 2D atomic crystals beyond graphene promises a diverse spectrum of properties. For example, hexagonal-boron nitride (h-BN), a layered material closest in structure to graphene is an insulator, while niobium selenide (NbSe2), a transition metal dichalcogenide, is metallic, and monolayers of other transition metal dichalcogenides such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are direct band gap semiconductors. The rich spectrum of properties exhibited by these 2D layered material systems can potentially be engineered on-demand and creates exciting prospects for using such systems in device applications ranging from electronics, photonics, energy harvesting, flexible electronics, transparent electrodes, and sensing. A review of the structure, properties, and the emerging device applications of these materials is presented in this paper. While the layered structure of these materials makes them amenable to mechanical exfoliation for quickly unveiling their novel properties and for fabricating proof-of-concept devices, an overview of the synthesis routes that can potentially enable scalable avenues for forming these 2D atomic crystals is also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据