4.5 Article

The effect of polymer hardness, pore size, and porosity on the performance of thermoplastic polyurethane-based chemical mechanical polishing pads

期刊

JOURNAL OF MATERIALS RESEARCH
卷 28, 期 17, 页码 2380-2393

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1557/jmr.2013.173

关键词

-

资金

  1. Cabot Microelectronics Corporation

向作者/读者索取更多资源

Solid-state microcellular foaming (SSMF) process was used to produce porous chemical mechanical polishing (CMP) pads in a variety of pore size and porosity range, using a variety of thermoplastic polyurethane (TPU) resin hardness. By controlling the pore size, porosity, and pad hardness, one is able to manufacture CMP pads that offer tunable pad properties. A brief introduction to the SSMF manufacturing process and thereby, unique microstructures created is first addressed followed by inner layer dielectric (ILD) CMP results, describing the effects of top TPU foam sheet properties, such as hardness, pore size, and porosity on ILD removal rate (RR) and wafer defects. Softer TPU-based porous pads showed significantly lower wafer scratch counts, while only a moderate increase in the ILD RR was seen with increasing resin hardness for similar pore size and porosity pads. Pore size has insignificant influence on wafer defect count but has significant influence on the ILD RR profile. CMP pads made from small pore size foams cause a nonflat RR profile.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据