4.5 Article

Application of small-scale testing for investigation of ion-beam-irradiated materials

期刊

JOURNAL OF MATERIALS RESEARCH
卷 27, 期 21, 页码 2724-2736

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1557/jmr.2012.303

关键词

-

资金

  1. Center for Integrated Nanotechnologies (CINT), a DOE nanoscience center
  2. Berkeley nuclear research center (BNRC)
  3. NRC faculty development grant [NRC-38-09-948]
  4. Austrian Science Fund (FWF) [J2834-N20]
  5. U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

Small-scale testing techniques such as nanoindentation and micro-/nanocompression are promising methods for addressing mechanical properties of ion-beam-irradiated materials. We performed different proton irradiations and critically evaluated the results obtained from nanoindentation and pillar compression, both performed parallel and perpendicular to the irradiation direction. Experiments parallel to beam direction suffer from variation of material properties with penetration depth. This is improved by cross-sectional experiments, thereby probing the effect of different doses along the beam penetration depth on mechanical properties. Finally, we demonstrate that, compared with nanoindentation, miniaturized uniaxial compression experiments offer a more reliable and straightforward interpretation of the mechanical data, as they impose a nominally uniaxial stress on a well-defined volume at a specific position. Moreover, the exposed pillar geometry is not influenced by surface contamination and enables in situ observation of the governing mechanical processes, which is typically not possible during indentation experiments in a half-space geometry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据