4.6 Article

Temperature changes of copper nanoparticle ink during flash light sintering

期刊

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
卷 214, 期 11, 页码 2730-2738

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jmatprotec.2014.06.007

关键词

Flash light sintering; In situ temperature measuring system; Copper; Nano-ink; Flexible substrate

资金

  1. National Research Foundation of Korea (NRF) - Ministry of Education [2010-0007120, 2012R1A6A1029029, 2013M2A2A9043280]
  2. R&D Convergence Program of MSIP (Ministry of Science, ICT and Future Planning)
  3. ISTK (Korea Research Council for Industrial Science and Technology) of Republic of Korea [B551179-13-02-05]
  4. National Research Council of Science & Technology (NST), Republic of Korea [B551179-13-02-05, 융합실용화-13-15-KIMM] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  5. National Research Foundation of Korea [2010-0007120] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The copper nanoparticle ink was coated on polyimide substrates using a doctor blade method. The films thus formed were then sintered by flash light irradiation at room temperature under ambient conditions. The flash light energy was varied from 2 J/cm(2) to 12 J/cm(2). To measure the temperature change, a non-inverting amplifier circuit with an op-amp and a type-K thermocouple was devised. The sheet resistance change was simultaneously monitored using a Wheatstone bridge circuit. An analytical temperature calculation was conducted, considering the heat transfer phenomena during the flash light irradiation. As the results, the temperature of the copper nanoparticle films was reached to (318 degrees C) in 10 ms at the flash light irradiation energy higher than 12 J/cm(2) and they were melted and fully sintered. The analytical solutions of the temperature profile of copper nanoparticles film and polyimide substrate (maximum temperature of copper nanoparticles film and polyimide substrates are 279 degrees C and 140 degrees C, respectively) in which the latent heats for phase changes of the copper nanoparticles and the binder (PVP) were concerned, agrees well with the experimentally measured temperature profiles of them (maximum temperature of copper nanoparticles film and polyimide substrates are 318 degrees C and 135 degrees C, respectively). The analytical calculation method proposed, could be used to design the flash light sintering variables applicable to various low-temperature flexible substrates. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据