4.6 Article

An experimental and numerical study on laser percussion drilling of thick-section alumina

期刊

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
卷 212, 期 6, 页码 1257-1270

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jmatprotec.2012.01.010

关键词

Laser percussion drilling; Thick-section ceramics; CO2 laser; Hole diameter; Spatter deposition; Finite element modelling (FEM)

资金

  1. National Nature Science Foundation of China [50875006]
  2. Program for New Century Excellent Talents in University [NCET-10-0007]
  3. Beijing Natural Science Foundation [3111002]

向作者/读者索取更多资源

A major challenge in laser percussion drilling of thick-section ceramics is to obtain a low taper and low spatter deposition hole leading to high quality post-processing. In order to achieve the fine hole drilling, it is important to understand the mechanism of laser percussion drilling. In this paper, an experimental and numerical study on laser percussion drilling was carried out. A two-dimension (2D) axisymmetric finite element (FE) model for simulation of temperature field and proceeding of hole formation during percussion drilling was developed. The FE model was validated by the corresponding experiment. Furthermore, a theoretical model for evaluation of temperature at melt front and velocity of melt ejection was presented in order to further validate the FE model and study the spatter deposition. The effects of laser peak power, pulse duty cycle and pulse repetition rate on hole diameter and spatter deposition were investigated by the developed models and experiments, in which the simulated results were in good agreement with the experiments. The study indicated that the size and temperature of the melt front significantly affected the hole diameter formation and spatter deposition during laser percussion drilling. The characteristic of melt front was mainly determined by the employed laser peak power, pulse repetition rate and pulse duty cycle. Based on the experimental and numerical study, the process parameters were optimised and a drilled-hole with low taper and low spatter deposition was obtained using a 3.5 kW CO2 laser. A microstructural and element compositional study was also performed in this work, by which the characteristics of microstructure and element composition in HAZ around laser drilled hole were revealed. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据