4.6 Article

A study on micro-hole machining of polycrystalline diamond by micro-electrical discharge machining

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jmatprotec.2010.07.034

关键词

Micro-electrical discharge machining; Polycrystalline diamond; Micro-holes; Micro-machining

资金

  1. National Natural Science Foundation of China [50635040]
  2. Ministry of Science and Technology of China [2006AA04Z332]

向作者/读者索取更多资源

Polycrystalline diamond (PCD), with its superior wear and corrosion resistance, is an ideal material for micro-hole parts in the field of microfabrication. This study investigated the micro-hole machining performance for PCDs by micro-electrical discharge machining (micro-EDM). A series of experiments were carried out to investigate the proper machining polarity and the impacts of micro-EDM parameters on machining performance. Experimental results indicate that negative polarity machining is suitable for micro-EDM of PCDs because of the protection brought over by the adhesion sticking to the electrode. An appropriate volume of adhesion on the tool electrode can help to increase the material removal rate (MRR) and reduce the relative tool wear ratio (TWR). By contrast, an excessive volume of adhesion can lead the machining into a vicious circle in which micro-holes are drilled with overlarge diameters. An optimal set of machining conditions was chosen among the investigated ranges of nominal capacitance and electrode rotation speed. An exemplary PCD through-hole, machined under the chosen optimal machining conditions, shows satisfactory machining results. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据