4.6 Article

Micro-spike EEG electrode and the vacuum-casting technology for mass production

期刊

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
卷 209, 期 9, 页码 4434-4438

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jmatprotec.2008.10.051

关键词

EEG electrode; Micromachining; Vacuum casting; Electroless plating; Micro-spike

向作者/读者索取更多资源

An innovative dry electroencephalography (EEG) electrode has been successfully designed and tested, in which multiple micro-spike electrodes, each of them consisting of a micro-pillar with a micro-tip on top of it, were designed to pass through the hairs and establish electrical conduction at the skin-electrode interface by penetrate into the stratum corneum of the skin. For hygiene reasons, such electrodes should be made disposable, at the same time, should be cost effective. Therefore, a mass production technology, including the processing methods, such as casting, has to be designed and developed. In this project, the micro-spike dry electrodes were fabricated by a vacuum casting method using a master pattern piece made by CNC micro-machining, in which silicone rubber moulds are created and then used to vacuum cast polyurethane (PU), epoxy or epoxy-carbon micro-spike electrodes. In order to obtain a harder polymeric material, varying amount of carbon fillers were added to the epoxy resin, and the hardness of the resulting material were measured and compared. It was found that a higher concentration of added carbon fillers resulted in a harder cast polymer composite. Further to the vacuum casting, to create an electrically conductive layer on the vacuum-casted electrode, an Ag/AgCl electroless deposition method has been developed. The sputtering of the conductive layer was also carried out for comparison. The developed micro-spike electrodes showed better performance in terms of the impedance level and stability as well as a much higher efficiency in EEG measurement. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据