4.6 Article

Geotechnical and Geoenvironmental Properties of Recycled Construction and Demolition Materials in Pavement Subbase Applications

期刊

JOURNAL OF MATERIALS IN CIVIL ENGINEERING
卷 25, 期 8, 页码 1077-1088

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)MT.1943-5533.0000652

关键词

Pavements; Shear strength; Recycling; Resilient modulus; Geomaterials; Base course; Geotechnical; Pavement; Subbase; Recycled materials; Waste; Shear strength; Resilient modulus

向作者/读者索取更多资源

A comprehensive laboratory evaluation of the geotechnical and geoenvironmental properties of five predominant types of construction and demolition (C&D) waste materials was undertaken in this research study. The C&D materials tested were recycled concrete aggregate (RCA), crushed brick (CB), waste rock (WR), reclaimed asphalt pavement (RAP), and fine recycled glass (FRG). The geotechnical assessment included particle size distribution, particle density, water absorption, compaction, Los Angeles abrasion, postcompaction sieve analysis, flakiness index, hydraulic conductivity and California bearing ratio (CBR) tests. Shear strength properties of the materials were studied through a series of triaxial tests. Consolidated drained triaxial tests undertaken on the recycled materials indicated that the recycled materials had a drained cohesion ranging from 41kPa to 46kPa and a drained friction angle ranging from 49 degrees to 51 degrees, with the exception of FRG and RAP. The response of the materials under repeated load was investigated using repeated load triaxial (RLT) tests. The RLT testing results indicated that RCA, WR, and CB performed satisfactorily at 98% maximum dry density and at a target moisture content of 70% of the optimum moisture content under modified compaction. The geoenvironmental assessment included pH value, organic content, total and leachate concentration of the material for a range of contaminant constituents. In terms of usage in pavement subbases, RCA and WR were found to have geotechnical engineering properties equivalent or superior to that of typical quarry granular subbase materials. CB at the lower target moisture contents of 70% of the OMC was also found to meet the requirements of typical quarry granular subbase materials. The properties of CB, RAP, and FRG, however, may be further enhanced with additives or mixed in blends with high quality aggregates to enable their usage in pavement subbases. (C) 2013 American Society of Civil Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据