4.5 Article

Cobalt-Free Laser Cladding on AISI Type 316L Stainless Steel for Improved Cavitation and Slurry Erosion Wear Behavior

期刊

出版社

SPRINGER
DOI: 10.1007/s11665-014-1244-9

关键词

cavitation erosion; Co-free laser cladding; Colmonoy-5; Metco-41C; slurry erosion

资金

  1. Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy, Government of India

向作者/读者索取更多资源

Laser cladding of Colmonoy-5 (a nickel base alloy) and Metco-41C (an iron base alloy) on AISI type 316L stainless steel (SS316L) and their wear behaviors were investigated to establish Co-free clad layers for potential applications in nuclear industry. A 3.5 kW CO2 laser-based system was used to optimize the laser cladding on SS316L substrate. The observed optimum parameters were: laser power of 1.6 kW, scan speed of 0.6 m/min, and powder feed rate of 8 g/min with 60% overlapping. The microstructure studies revealed that the clad layers primarily comprise very fine columnar dendritic structures, while clad-substrate interface exhibited planar and non-epitaxial mode of solidification due to high cooling rates. The cavitation and slurry erosion behaviors of laser clad layers were also compared to that of Stellite-6 for potential direct replacement. The cavitation erosion resistance was improved by a factor of 1.6, 3.7, and 4.1, while the slurry erosion resistances at an impingement angle of 30A degrees were 1.5, 4.8, and 1.8 times better for laser clad surfaces of Colmonoy-5, Metco-41C, and Stellite-6, respectively, as compared to that of bare SS316L substrate. The study demonstrated that Metco-41C is a better choice as Co-free clad material for potential nuclear applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据