4.5 Article

High-Power Diode Laser Surface Treated HVOF Coating to Combat High Energy Particle Impact Wear

期刊

出版社

SPRINGER
DOI: 10.1007/s11665-013-0475-5

关键词

diode laser treatment; erosion resistance; fracture toughness; hydro turbine; WC-Co-Cr HVOF coating

向作者/读者索取更多资源

High-velocity oxy-fuel (HVOF)-sprayed coatings have performed exceptionally well in low-energy particle impact wear and are accepted worldwide. However, their application for high-energy particle impact wear (HEPIW) requires a different approach and more efforts. HVOF-coating systems typically use WC-Co, WC-Co-Cr, WC-Ni-Cr, and FeCrAlY-Cr3C2 powders. WC-Co-Cr powders are preferred when there is a high demand for corrosion resistance. WC-10Co-4Cr coating powder has been selected in the current study. To improve coating properties such as microhardness, fracture toughness, and HEPIW resistance, a new approach of surface treatment with robotically controlled high-power diode laser (HPDL) is attempted. The robotically controlled HVOF-coating deposition and laser surface treatment were monitored using real-time diagnostic control. The HPDL-treated coating has been compared with as-sprayed HVOF coating for HEPIW resistance, fracture toughness, microhardness and microstructure. The coating characteristics and properties after laser surface treatment have improved many times compared with as-sprayed HVOF coating. This is due to the elimination of pores in the coating and formation of a metallurgical bond between coating and substrate. This new development opens up a possibility of using such laser treatments in specialized areas where HEPIW damages are acute. The fracture toughness and HEPIW resistance along with optical micrographs of HPDL-treated and untreated HVOF coatings are discussed and reported in this article. HEPIW resistance is observed to be proportional to the product of fracture toughness and microhardness of the HVOF coating.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据