4.3 Article

Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 22, 期 15, 页码 7280-7290

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2jm15906f

关键词

-

向作者/读者索取更多资源

Two-dimensional materials have various applications in next-generation nanodevices because of their easy fabrication and particular properties. In this work, we studied the effects of edge structures on the edge stability, and electronic and magnetic properties of MoS2 nanoribbons by first-principles calculations. We predicted that S-terminated zigzag nanoribbons are the most stable even without hydrogen saturation because of their low and negative edge energies, although hydrogen saturation of the edge states can stabilize other nanoribbons with different edge structures. MoS2 zigzag nanoribbons are metallic and ferromagnetic. Importantly, their conductivity may be semiconducting (n- or p-type) or half metallic by controlling the edge structures saturated with H atoms. The magnetic states of the MoS2 zigzag nanoribbons are enhanced by H-saturation and are much stronger than those of graphene zigzag nanoribbons. The armchair nanoribbons are semiconducting, with bandgaps increased by the hydrogen saturation of their edge states, and are nonmagnetic. These MoS2 nanoribbons with versatile functions may have applications in spintronics, nanodevices, and energy harvesting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据