4.3 Article

Nitrogen-doped carbon-encapsulation of Fe3O4 for increased reversibility in Li+ storage by the conversion reaction

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 22, 期 16, 页码 7845-7850

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2jm30422h

关键词

-

资金

  1. National University of Singapore Graduate School for Integrative Science and Engineering (NGS)

向作者/读者索取更多资源

One great challenge in designing anode materials for lithium-ion batteries is to satisfy the concurrent requirements for good capacity retention, high rate performance and low first cycle losses. We report here the design and synthesis of a nitrogen-doped carbon encapsulated Fe3O4 composite which performed very well in all these areas. The composite with the optimized carbon content not only showed a high reversible capacity of similar to 850 mA h g(-1) for 50 cycles at 100 mA g(-1), but was also able to maintain a stable cycling performance at a twenty-fold increase in current density to 2000 mA g(-1). More importantly, the composite significantly lowered the irreversible capacity loss in the first cycle compared with other iron oxide anodes reported in the literature. Characterization of the electrode/electrolyte interface indicated the presence of a protective solid electrolyte interface (SEI) layer in which chemically stable LiF and FeF3 were the major constituents. Thus, it is believed that the N-doped carbon coating had effectively modified the surface chemistry at the anode/electrolyte interface to increase the columbic efficiency of cycling and to reduce the secondary reactions in the first cycle of use.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据