4.3 Article

Covalent-organic polymers for carbon dioxide capture

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 22, 期 42, 页码 22663-22669

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2jm35446b

关键词

-

资金

  1. Huo Yingdong Foundation [121070]
  2. National 973 Program [2011CB706900]
  3. NSF of China [21274011, 21121064]
  4. MOE [20100010110001]
  5. Chemical Grid Program from BUCT

向作者/读者索取更多资源

Reducing anthropogenic carbon dioxide emission has become an urgent environmental and climate issue of our age. Here, a series of covalent-organic polymers (COPs) are synthesized, and the adsorption properties of these COPs for H-2, CO2, CH4, N-2 and O-2 are studied. The H-2 uptake of COP-2 reaches 1.74 wt% at 77 K and 1 bar, which is among the highest reported uptakes in the field of microporous organic polymers under similar conditions, and CO2 and CH4 adsorption capacities are 594 mg g(-1) and 78 mg g-1, respectively, at 298 K and 18 bar. Then, based on the single component isotherm, the dual-site Langmuir-Freundlich (DSLF)-based ideal adsorption solution theory (IAST) is used to predict the selectivity of the COP materials for post-combustion (CO2-N-2) and pre-combustion (O-2-N-2) gas mixtures. The IAST predicted results indicate that COP-1 exhibits significantly higher selectivity compared to COP-2, 3 and 4, due to its smaller pore size. In particular, the adsorption selectivity of COP-1 for the CO2-N-2 mixture reaches 91 at a CO2 : N-2 ratio of 15 : 85 at 298 K and 1 bar, and 2.38 for the 21 : 79 O-2-N-2 mixture at 298 K and 1 bar. Furthermore, these COPs also show robust properties for the removal of CO2 from natural gas. The adsorption selectivity of COP-1 for CO2-CH4 is in the range of 4.1-5.0 at a CO2 : CH4 ratio of 15 : 85 at 0 < P < 40 bar.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据