4.3 Article

Porous ZnO nanorod for targeted delivery of doxorubicin: in vitro and in vivo response for therapeutic applications

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 22, 期 45, 页码 24145-24154

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2jm35013k

关键词

-

资金

  1. Council of Scientific and Industrial Research (CSIR), New Delhi
  2. DBT-GOI
  3. ICAR-NAIP
  4. ICAR-National Fund
  5. ISI plan project

向作者/读者索取更多资源

Cancer cell specific targeted delivery (TDD) by porous nanocarrier is on a high role. Here in a simple route for the synthesis of porous ZnO nanorods (ZnO) has been demonstrated. ZnO expressed very high surface area of 305.14 m(2) g(-1) (S-BET) and uniformly distributed pores of 5 nm. In continuation ZnO has been fabricated with 3-aminophosphonic acid followed by folic acid to yield folate conjugated porous ZnO nanorod (ZnO-FA). High surface area, uniformly distributed pores on its surface make the nanocarrier suitable for high drug loading (88%) of the anticancer drug doxorubicin (DOX). A pH triggered drug release was observed with minimum release in pathophysical conditions. In vitro efficacy of DOX loaded ZnO-FA (ZnO-FA-DOX) has been evaluated against breast cancer cells MDA-MB-231, which is not possible alone by DOX or ZnO-FA. Targeted scaffold with pendant -NH2 group has been covalently bonded with fluorescent dye (RITC) for cellular uptake and imaging studies in MDA-MB-231 cells; the possible pathway for cancer regression has also been evaluated. Even in vivo acute and intravenous toxicological evaluation on murine model system complemented biocompatibility of ZnO-FA in TDD. All together we have collaged a template free synthesis of porous ZnO nanorod, successful targeting on to cancer cells, high drug loading, pH triggered drug release, in vitro efficacy of ZnO-FA-DOX against MDA-MB-231 cells and in vivo compatibility as well. We envisioned the future prospect of porous ZnO nanostructures in TDD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据