4.3 Article

Magnetic drug carrier with a smart pH-responsive polymer network shell for controlled delivery of doxorubicin

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 22, 期 30, 页码 15206-15214

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2jm31721d

关键词

-

资金

  1. National Science Foundation of China [20974023, 21034003, 51073040]
  2. Innovation Foundation for Distinguished Students of Fudan University [11-25-15]

向作者/读者索取更多资源

A smart magnetic targeting drug carrier (MCNC/PAA) comprising an approximately 100 nm sized magnetic colloid nanocrystal cluster (MCNC) core and a pH-responsive cross-linked poly(acrylic acid) (PAA) shell is reported. The abundant carboxyl groups in the shell enable the resultant MCNC/PAA to easily load a large amount of doxorubicin (DOX) (up to 44.6%) via the strong interaction between the DOX and the carboxyl group in a neutral solution. Interestingly, a synergistic pH-responsive effect derived from the entrapped DOX and PAA network was found to effectively manipulate the drug releasing behavior at 37 degrees C. It was found that the premature release was highly restricted at a pH of 7.4, and upon reduction in pH from 7.4 to 5.0 or 4.0, a large amount of drug was rapidly released. Compared with the synthesized MCNC/PNIPAM, MCNC/PHEMA and MCNC/PDMAPMA nanocarriers, the MCNC/PAA was preferably suited to drug delivery. In addition, the composite nanocarriers could be tracked by magnetic resonance imaging (MRI). The cytotoxicity assay of MCNC/PAA to normal cells indicated that the composite nanospheres were biocompatible and suitable as drug carriers. Meanwhile, the DOX-loaded composite nanospheres had more potent cytotoxicity than free DOX to HeLa cells. These results clearly imply that the MCNC/PAA nanocarrier is a promising platform that can be applied to construct a smart drug delivery system with magnetic targeting and pH-stimulation, as well as tracking by MRI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据