4.6 Article

Proteomic analysis of protein carbonylation: a useful tool to unravel nanoparticle toxicity mechanisms

期刊

PARTICLE AND FIBRE TOXICOLOGY
卷 12, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12989-015-0108-2

关键词

Surface functionalization; Protein carbonylation; Oxidative stress; Silica nanoparticles; Zirconium oxide nanoparticles; Silver nanoparticles; Rat lung; ESR; DCFDA

资金

  1. German BMBF [03X0105]
  2. EC from EU [263215]

向作者/读者索取更多资源

Background: Oxidative stress, a commonly used paradigm to explain nanoparticle (NP)-induced toxicity, results from an imbalance between reactive oxygen species (ROS) generation and detoxification. As one consequence, protein carbonyl levels may become enhanced. Thus, the qualitative and quantitative description of protein carbonylation may be used to characterize how biological systems respond to oxidative stress induced by NPs. Methods: We investigated a representative panel of 24 NPs including functionalized amorphous silica (6), zirconium dioxide (4), silver (4), titanium dioxide (3), zinc oxide (2), multiwalled carbon nanotubes (3), barium sulfate and boehmite. Surface reactivities of all NPs were studied in a cell-free system by electron spin resonance (ESR). NRK-52E cells were treated with all NPs, analyzed for viability (WST-1 assay) and intracellular ROS production (DCFDA assay). Carbonylated proteins were assessed by 1D and/or 2D immunoblotting and identified by matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF/TOF). In parallel, tissue homogenates from rat lungs intratracheally instilled with silver NPs were studied. Results: Eleven NPs induced elevated levels of carbonylated proteins. This was in good agreement with the surface reactivity of the NPs as obtained by ESR and the reduction in cell viability as assessed by WST-1 assay. By contrast, results obtained by DCFDA assay were deviating. Each NP induced an individual pattern of protein carbonyls on 2D immunoblots. Affected proteins comprised cytoskeletal components, proteins being involved in stress response, or cytoplasmic enzymes of central metabolic pathways such as glycolysis and gluconeogenesis. Furthermore, induction of carbonyls upon silver NP treatment was also verified in rat lung tissue homogenates. Conclusions: Analysis of protein carbonylation is a versatile and sensitive method to describe NP-induced oxidative stress and, therefore, can be used to identify NPs of concern. Furthermore, detailed information about compromised proteins may aid in classifying NPs according to their mode of action.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据