4.3 Article

Facile synthesis of high-quality CuInZnxS2+x core/shell nanocrystals and their application for detection of C-reactive protein

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 22, 期 35, 页码 18623-18630

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2jm33763k

关键词

-

资金

  1. research project of the National Natural Science Foundation of China [21071041]
  2. Program for New Century Excellent Talents in University of Chinese Ministry of Education
  3. Public Welfare Research Project Fund from General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China (AQSIQ) [2013424086]

向作者/读者索取更多资源

Highly photoluminescent (PL) CuInZnxS1+x nanocrystals (NCs) and CuInZnxS1+x/ZnS core/shell NCs were successfully synthesized by a facile colloidal method. First, a facile and reliable non-injection method for the synthesis of photoluminescent CuInZnxS2+x NCs was developed with inexpensive reagents. The relative PL quantum yields (QYs) of CuInZnxS2+x NCs could reach up to 30%, with tunable emissions in the range 580-780 nm. Then, CuInZnxS2+x/ZnS core/shell NCs were synthesized and showed greatly improved optical properties, the PL QY of the CuInZnxS2+x/ZnS NCs can reach up to 60%. Even in the near-infrared region, the PL QY still can achieve up to 45% due to the successful controlled red shift of PL during the ZnS shell growth process. More importantly, such core/shell NCs can be transferred into water successfully using amphiphilic oligomer (polymaleic acid n-hexadecanol ester) as a surface coating agent by an organic-aqueous phase transfer method and the PL QYs can be well controlled over 40%. Furthermore, a biosensor system (lateral flow immunoassays system, LFIA) for the detection of C-reactive protein (CRP) was developed by using this water-soluble CuInZnxS2+x/ZnS core/shell NCs as fluorescent label and a nitrocellulose filter membrane for lateral flow. The results showed that such CuInZnxS2+x/ZnS core/shell NCs were excellent fluorescent labels to detect CRP. The detection sensitivity for CRP could reach 1 ng mL(-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据