4.3 Article

Reinforcement and interphase of polymer/graphene oxide nanocomposites

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 22, 期 8, 页码 3637-3646

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2jm15062j

关键词

-

资金

  1. European Community [PIIF-GA-2009-236739]

向作者/读者索取更多资源

Polymer/graphene (oxide) nanocomposites exhibit enhanced mechanical properties at low volume fractions of graphene-based nanofillers. An understanding of the reinforcement behaviour was developed through the investigation of interfacial interactions between graphene oxide (GO) nanoplatelets and polymer matrix (PLLA, PCL, PS or HDPE) by combination of microstructure characterization and micromechanical modeling methods. The interfacial interaction determines the degree of dispersion of GO in polymers, interfacial adhesion strength as well as reinforcement efficiency, which can be tailored by the surface chemistry of GO and functionality of polymers. Homogeneous dispersion of GO nanoplatelets with high aspect ratios was found in PLLA and PCL matrices, as well as in lower polar polymer PS due to the preferable interactions between the aromatic rings and the graphene layers, while stacked GO layers with a lower aspect ratio were observed in HDPE matrix even with the presence of an organic compatibilizer. The theoretical elastic moduli of the four kinds of polymer/GO nanocomposites calculated by using the Halpin-Tsai model or a combination of Laminate theory and Mori-Tanaka model underestimated the experimental results. Considering the interfacial interactions, an effective volume fraction was introduced to the above composite models which interpreted the experimental data well. The interphase zone was thus quantified by using micromechanical modeling based on the measured mechanical properties of polymer/GO nanocomposites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据