4.3 Article

Electrically bistable memory devices based on all-conjugated block copolythiophenes and their PCBM composite films

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 21, 期 38, 页码 14502-14508

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1jm11570g

关键词

-

向作者/读者索取更多资源

We explore the memory device characteristics of the all-conjugated diblock copolythiophenes, poly(3-hexylthiophene)-block-poly(3-phenoxymethylthiophene) (P3HT-b-P3PT), and their blends with PCBM. The field-effect transistors prepared from P3HT-b-P3PT showed a significant hysteresis between the forward and backward gate-bias scans in the transfer curve, indicating the occurrence of charge trapping. The charge trapping may have occurred within the amorphous P3PT domains dispersed in the block copolythiophene by preventing charge transport. P3HT(52)-b-P3PT(39) and P3HT(102)-b-P3PT(37) exhibited dynamic random access memory (DRAM) behavior in the sandwich configuration of ITO/P3HT-b-P3PT/Al, whereas P3HT only showed semiconductor characteristics, suggesting the significant effect of the amorphous P3PT segments on the electrical switching behavior. By blending a small amount (5-10 wt%) of PCBM into P3HT-b-P3PT of different block ratios (P3HT(52)-b-P3PT(39), P3HT(102)-b-P3PT(37), and P3HT(89)-b-P3PT(23)), the memory devices showed a write-once-read-many times (WORM) behavior with the switching voltages of -2.6 to -3.3 V and high ON/OFF ratios (10(5) to 10(7)). The mechanism associated with the memory characteristics was the charge transfer from the P3HT-b-P3PT donor to the PCBM acceptor, which stabilized the charge separated state and retained the high conductance state for a long time during the ON stage. These experimental results provide a new strategy of designing all-conjugated block copolymers for advanced memory device applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据