4.3 Article

Thermodynamic modelling of nanomorphologies of hematite and goethite

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 21, 期 31, 页码 11566-11577

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1jm10381d

关键词

-

资金

  1. Australian Research Council [DP0986752]
  2. National Computational Infrastructure National Facility in Australia, under MAS [p00]

向作者/读者索取更多资源

Iron oxide and oxyhydroxide nanoparticles are among the most important mobile and catalytic agents in a variety of biogeochemical environments, and are being increasingly synthesized for energy, electronic, catalyst, environmental and medical applications. The morphologies at nanoscale are relevant to the control of shapes and sizes, surface chemistry, and performance of these nanoparticles, as well as our understanding of naturally occurring processes. Therefore, we have begun to develop this understanding by studying the relationship between size, shape, and thermodynamic stability of unpassivated hematite (alpha-Fe2O3) and goethite (alpha-FeOOH) nanoparticles, using a robust thermodynamic morphology model with input parameters from reliable first-principles calculations and thermochemical data. The results revealed the thermodynamic stable shapes of hematite and goethite nanoparticles, and demonstrated that the phase transformation from goethite to hematite is highly dependent on the particle size and temperature. Goethite nanoparticles are thermodynamically stable with small sizes, compared to hematite, but the equilibrium transformation temperature increases rapidly with decreasing particle size. The morphology sensitive phase transformation predicted by our model is a step further towards a nanophase diagram of iron oxides and

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据