4.3 Article

Characterizing the mechanochemically active domains in gem-dihalocyclopropanated polybutadiene under compression and tension

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 21, 期 23, 页码 8454-8459

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm04117c

关键词

-

资金

  1. US Army Research Laboratory
  2. Army Research Office [W911NF-07-1-0409]

向作者/读者索取更多资源

The incorporation of mechanically active functional groups, or mechanophores, along polymer backbones offers opportunities for new stress-responsive material properties and also provides a method by which to probe fundamental questions related to molecular stress distributions in polymeric materials under load. The activation of covalent chemistry in polymers has primarily been demonstrated in solution, but to date little is known regarding activation in the solid state. In the latter regard, recent effort has focused on the use of spectroscopically active mechanophores that directly probe the presence of stress within materials. The distribution of forces within individual polymer chains, however, has yet to be characterized. Herein we report that gem-dihalocyclopropane (gDHC) functionalized polybutadiene is mechanochemically active in the solid state, and that the strain-triggered ring opening of the gDHCs provides quantitative information regarding the number of mechanically active monomers and the size of the mechanically activated domains along individual polymer backbones within bulk materials subjected to compressive and tensile loads. The results show that high mechanical forces are concentrated over lengths of only a few monomers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据