4.3 Article

Aqueous room-temperature synthesis of Au-Rh, Au-Pt, Pt-Rh, and Pd-Rh alloy nanoparticles: fully tunable compositions within the miscibility gaps

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 21, 期 31, 页码 11599-11604

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm03913f

关键词

-

资金

  1. NSF [DMR-0748943]
  2. American Recovery and Reinvestment Act

向作者/读者索取更多资源

Many binary late transition metal systems have large bulk miscibility gaps, and a variety of synthetic strategies have been developed to generate these non-equilibrium alloys as nanoparticles. While many of these methods strive to co-nucleate both elements by exploiting fast reduction kinetics or co-sequestration within a confined space, we show here that simple room-temperature borohydride co-reduction of appropriate aqueous metal salt solutions yields alloy nanoparticles in the bulk-immiscible Au-Rh, Au-Pt, Pt-Rh, and Pd-Rh systems. The compositions can be tuned across the entire Au(1-x)Rh(x), Au(1-x)Pt(x), Pt(1-x)Rh(x), and Pd(1-x)Rh(x) solid solutions by varying the ratio of metal salt reagents, and they form in the presence of a variety of molecular and polymeric surface stabilizers. Reaction pathway studies on the model Au-Rh system suggest that the alloy nanoparticles form via a conversion chemistry'' mechanism: Au nanoparticle templates nucleate first, followed by diffusion of Rh to form homogeneous Au-Rh alloy nanoparticles. The alloy nanoparticles tend to be agglomerated, but this can be minimized by forming the nanoparticles directly on catalytically relevant high surface area carbon and biological supports, e.g. Vulcan carbon and wild-type M13 bacteriophage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据