4.3 Article

Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 20, 期 34, 页码 7114-7117

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm00467g

关键词

-

资金

  1. AOARD, USA
  2. IITM, India

向作者/读者索取更多资源

Graphene nanoplatelets have been synthesized by thermal exfoliation of graphitic oxide and nitrogen doped graphene nanoplatelets have been obtained by nitrogen plasma treatment. Graphene nanoplatelets and nitrogen doped graphene nanoplatelets have been used as a catalyst support for platinum nanoparticles for oxygen reduction reactions in proton exchange membrane fuel cells. Platinum nanoparticles were dispersed over these support materials using the conventional chemical reduction technique. The morphology and structure of the graphene based powder samples were studied using X-ray diffraction, Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. A full cell was constructed with platinum loaded nitrogen doped graphene nanoplatelets and the results have been compared with platinum loaded graphene nanoplatelets. A maximum power density of 440 and 390 mW cm(-2) has been obtained with platinum loaded nitrogen doped graphene and platinum loaded graphene nanoplatelets as ORR catalysts respectively. Nitrogen plasma treatment created pyrrolic nitrogen defects, which act as good anchoring sites for the deposition of platinum nanoparticles. The improved performance of fuel cells with N-G as catalyst supports can be attributed to the increased electrical conductivity and improved carbon-catalyst binding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据