4.3 Article

Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 20, 期 32, 页码 6720-6725

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm00059k

关键词

-

向作者/读者索取更多资源

Vanadium pentoxide (V2O5) nanofibers (VNF) were synthesized through a simple electrospinning method, and their application as supercapacitor electrodes demonstrated. The effect of annealing temperature on the microstructure and morphology of VNF was investigated systematically through scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area measurements. Electrochemical properties of the synthesized products as electrodes in a supercapacitor device were studied using cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy in aqueous electrolyte of different pH and also in an organic electrolyte. The highest specific capacitance was achieved for VNF annealed at 400 degrees C, which yielded 190 F g(-1) in aqueous electrolyte (2 M KCl) and 250 F g(-1) in organic electrolyte (1 M LiClO4 in PC) with promising energy density of 5 Wh kg(-1) and 78 Wh kg(-1) respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据