4.3 Article

Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 20, 期 32, 页码 6681-6687

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm00810a

关键词

-

资金

  1. Louisiana Board of Regents
  2. PKFA [LEQSF-2009RD]

向作者/读者索取更多资源

Halloysite clay tubes of 50 nm diameter and ca. 1000 nm length were analyzed as potential nanocontainers for loading, storage and induced sustained release of chemical agents. Halloysite is a natural aluminosilicate mineral with hollow cylindrical geometry and submicron size. Halloysite nanotubes loaded with the corrosion inhibitor benzotriazole can be admixed into paint to improve its anticorrosion performances as well as the coating tensile strength. Corrosion protection of such coating was evaluated by direct exposure of the coated metal (copper) to highly corrosive media. Loading and release characteristics of benzotriazole from these nanotubes were optimized. Benzotriazole release kinetics correspond to the time needed for the formation of a metal protective layer through copper complexation. For formation of the tube end stoppers, benzotriazole loaded halloysite was exposed to the solution of Cu(II) ions, and kinetics of the stopper complex formation was analyzed. Tunable release of benzotriazole was achieved by controlling the strength of the stopper complexes, and the release time may be varied from ten to hundreds of hours. A possibility for the tube on/off release switch was demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据