4.3 Article Proceedings Paper

A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 20, 期 20, 页码 4067-4073

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b925245b

关键词

-

向作者/读者索取更多资源

An imide-functionalized material, poly(oxyethylene)-segmented polymer, was synthesized from the reaction of poly(oxyethylene) diamine of 2000 g mol(-1) M(w) and 4,4'-oxydiphthalic anhydride and used to disperse hybrid nanomaterials of platinum nanoparticles and multi-wall carbon nanotubes (PtNP/MWCNT). The composite material was spin-coated into film and further prepared as the counter electrode (PtNP/MWCNT-CE) for a dye-sensitized solar cell (DSSC). The short-circuit current density (J(SC)) and power-conversion efficiency (eta) of the DSSC with PtNP/MWCNT-CE were found to be 18.01 +/- 0.91 mA cm(-2) and 8.00 +/- 0.23%, respectively, while the corresponding values were 14.62 +/- 0.19 mA cm(-2) and 6.92 +/- 0.07% for a DSSC with a bare platinum counter electrode (Pt-CE). The presence and distribution of PtNP/MWCNT on the CE were characterized by using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The attachment of PtNPs on MWCNTs was observed by transmission electron microscopy (TEM). Cyclic voltammetry (CV), incident-photo-to-current efficiency (IPCE) and electrochemical impedance spectra (EIS) were correlated to explain the efficacy of this nanocomposite system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据