4.3 Review

Polymeric supramolecular systems for drug delivery

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 20, 期 2, 页码 211-222

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b910948j

关键词

-

资金

  1. KRIBB Research Initiative Program
  2. Center for Bioactive Molecular Hybrids (CBMH), Yonsei University
  3. Ministry of Education, Science and Technology

向作者/读者索取更多资源

Recent advances in supramolecular chemistry have had significant influence on the biomedical applications of materials chemistry. Supramolecular systems are based on weak and reversible non-covalent interactions, such as hydrogen bonding, metal coordination, hydrophobic attractions, van der Waals forces, pi-pi, and electrostatic interactions. Because of the weak and reversible nature of the molecular interactions in self-assembled supramolecular systems, they are excellent candidates for the design of drug delivery systems (DDS). In DDS, therapeutic agents can be temporarily encapsulated into the carrier vehicles and released at a specific site or with designated timing. Using DDS, the effectiveness of existing drugs can be optimized, which sometimes provides new indications. DDS must have not only optimal drug loading capacities and release properties, but also be biocompatible with low toxicity. Many types of biocompatible polymeric materials have already been developed for self-assembled drug formulations. Current studies on DDS are aiming at target-specific delivery of therapeutic agents and stimuli-responsive drug release. In this feature article, we will overview polymeric supramolecular systems for target-specific drug delivery and stimuli-responsive drug release.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据